

FELTHAM PRESS

Introduction

This collection contains a variety of images for use in the teaching of Biomechanics. They are designed as focal points for explanations, discussions, and revision. The written content is kept to a minimum, and with a few exceptions they can be used at almost any level at the discretion of the tutor.

Contents List

Levers

1 Different Types of Lever

Linear Motion

- 2 The Run Resultant ground reaction force.
- **3 The Run** Graph showing the vertical ground reaction force and gravitational force acting on a sprinter whilst in contact with the starting blocks.
- **4 The Run** Graph showing the net vertical ground reaction force acting on a sprinter whilst in contact with the starting blocks.
- **5 The Run** Graph showing the vertical ground reaction force of a single footfall during a 100m race.
- **6** The Run Graph showing the net vertical ground reaction force of a single footfall during a 100m race.
- **7 The Run** Graph showing the horizontal ground reaction force acting on a sprinter whilst pushing against the starting blocks.
- **8 The Run** Graph showing the horizontal ground reaction force acting on sprinter during one footfall early in a 100m race.

Contents continued

- **9 The Run** Graphs showing the horizontal ground reaction force acting on a sprinter during one footfall in the middle and at the end of a 100m race.
- **10** The Vertical Jump Graph showing the changes in position of a performer's centre of gravity during the take-off phase of a vertical jump.
- **11 The Vertical Jump** Graph showing the vertical velocity during the take-off phase of a vertical jump
- **12** The Vertical Jump Graph showing vertical ground reaction force during the take-off phase of a vertical jump.
- 13 The Vertical Jump Series of graphs showing the vertical ground reaction force, gravitational force, and net force of a jumper during the take-off phase of a vertical jump (Part A).
- **14 The Vertical Jump** Series of graphs showing the vertical ground reaction force, gravitational force, and net force of a jumper during the take-off phase of a vertical jump (Part B).
- 15 The Vertical Jump Series of graphs showing the vertical ground reaction force, gravitational force, and net force of a jumper during the take-off phase of a vertical jump (Part C).
- 16 The Vertical Jump Series of graphs showing the vertical ground reaction force, gravitational force, and net force of a jumper during the take-off phase of a vertical jump (Part D).
- **17 The Vertical Jump** Graph showing the net force acting on a jumper during the take-off phase of a vertical jump.
- **18 The Vertical Jump** Graph showing the vertical ground reaction force and gravitational force acting on a jumper during the take-off phase of a vertical jump.
- **19 The Vertical Jump** Graph showing a representation of the net impulse acting during the take-off phase of a vertical jump.

Contents continued

Centre of Gravity

- 20 Net Force and Centre of Gravity The handstand
- **21 Net Force and Centre of Gravity** Withstanding impact from the side.
- **22** Changing position of the Centre of Gravity Various body positions.
- **23 High Jump Technique** The 'scissors' and the 'Fosbury flop'.

Angular Motion

- **24 Rotation** Weight generating torque force about a supported axis.
- **25 Rotation** Weight generating torque force about a non-supported axis.
- **26 Rotation** Weight generating torque force about a point of contact axis.
- **27 Rotation** Stages of a flick-flak (0.08s intervals).
- **28 Rotation** Ground reaction force generating torque.
- **29 Rotation** Graph showing torque force during the take-off phase of a flick-flak.
- **30 Rotation** Graph showing the relationship between moment of inertia and angular velocity in a standing back somersault (flight phase).
- **31 Angular velocity** Graphs showing angular position and angular velocity of upper leg during running cycle.
- **32 Angular velocity** Graphs showing angular position and angular velocity of lower leg during running cycle.

Contents continued

Fluid Forces

- **33 Bernoulli Effect** Lamina flow around a slow moving ball and a fast moving ball.
- **34 Reduced Drag** Late separation of air flow by travelling above the critical velocity.
- **35 Swing** Disturbing the air using the seam on a cricket ball.
- **36 Magnus Effect** Lift force created by 'spin'.
- **37 Magnus Effect** Lift force lift force at 90° to the direction of travel.
- **38 Boundary Layer** Laminar flow around a discus.

Parabolas

- **39 Symmetry** The symmetrical parabola.
- **40 Range** Optimum release angle for height for maximum range.
- **41 Air Resistance** Asymmetric parabolic flight path due to air resistance.
- **42 Velocity Vector** Resultant of vertical velocity component and horizontal velocity component.
- **43 Velocity Vector** Parabolic flight path showing horizontal component only.
- **44 Velocity Vector** Parabolic flight path showing vertical component only.
- **Velocity Vector** Changes in the vertical velocity component of the parabolic flight path of a projectile (shot put) with the landing point lower than the release point.
- **Velocity Vector** Long jump vertical and horizontal velocity components of a long jump flight parabola.
- **47 Jumps** Centre of gravity parabola of 'Fosbury flop'.
- **48 Jumps** Altering the position of the body in relation to the centre of gravity in a jump to 'Hang in the Air'.

Levers

Levers Different Types of Lever

123 = PLE

Ist Order Lever

Pivot (fulcrum) between effort and load

E-P-L

eg: atlas vertebrae to skull joint

2nd Order Lever

Load between Effort and Pivot

E - L - P

eg: ankle joint

3rd Order Lever

Effort between Load and Pivot

P – E – L

eg: elbow joint

Linear Motion

Linear Motion

The Run

Resultant ground reaction force

Resultant ground reaction force

Linear Motion

The Run

Graph showing the vertical ground reaction force and gravitational force acting on a sprinter, whilst in contact with the starting blocks.

Levers Different Types of Lever

123 = PLE

Ist Order Lever

Pivot (fulcrum) between effort and load

E-P-L

eg: atlas vertebrae to skull joint

2nd Order Lever

Load between Effort and Pivot

E - L - P

eg: ankle joint

3rd Order Lever

Effort between Load and Pivot

P – E – L

eg: elbow joint

Linear Motion

The Run

Resultant ground reaction force

Resultant ground reaction force

Angular Motion

Rotation

Ground reaction force generating torque

F = Ground reaction force

D = Perpendicular distance between line of action of the ground reaction force and the centre of gravity (axis)

Fluid Forces Bernoulli Effect

Laminar flow around a slow moving ball and a fast moving ball

Fast moving ball

s = separation point

